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1 Powers of diagonalizable matrices

In this section we will give 2 algorithms of computing the m-th power of a matrix.

1.1 Method 1

First method is based on diagonalization. Suppose A is a given matrix, and we want to find

its m-th power, i.e. we want to get a formula for Am. We will suppose that the matrix A

is diagonalizable. Let λ1, λ2, . . . , λn be the eigenvalues of A, and e1, e2, . . . , en be its linearly

independent eigenvectors. Then we know, that there exists a matrix C, whose columns are

eigenvectors, and a diagonal matrix

D =




λ1 0 . . . 0

0 λ2 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . λn




such that

D = C−1AC, or A = CDC−1.

Now we can see that

Am = (CDC−1)m

= (CDC−1)(CDC−1) · · · (CDC−1)︸ ︷︷ ︸
m

= CD(C−1C)D(C−1 . . . C)DC−1

= CDID . . . IDC−1

= CDmC−1.

But

Dm =




λ1 0 . . . 0

0 λ2 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . λn




m

=




λm
1 0 . . . 0

0 λm
2 . . . 0

. . . . . . . . . . . . . . . . .

0 0 . . . λm
n



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So,

Am = C




λm
1 0 . . . 0

0 λm
2 . . . 0

. . . . . . . . . . . . . . . . .

0 0 . . . λm
n


 C−1.

Example 1.1. Let’s find the formula for

(
3 −2

1 0

)m

. The characteristic polynomial is

pA(λ) = λ2 − 3λ + 2.

So, the eigenvalues are λ1 = 1, λ2 = 2. Let’s compute eigenvectors.

λ1 = 1. After subtraction λ1 = 1 from the diagonal, we have

(
2 −2

1 −1

)
, so the eigenvector is

(1, 1).

λ2 = 2. After subtraction λ2 = 2 from the diagonal, we have

(
1 −2

1 −2

)
, so the eigenvector is

(2, 1).

Thus,

D =

(
1 0

0 2

)
, C =

(
1 2

1 1

)
, C−1 =

(
−1 2

1 −1

)
.

Now we get

Am = CDmC−1

=

(
1 2

1 1

)(
1 0

0 2

)m (
−1 2

1 −1

)

=

(
1 2

1 1

)(
1 0

0 2m

)(
−1 2

1 −1

)

=

(
1 2m+1

1 2m

)(
−1 2

1 −1

)

=

(
−1 + 2m+1 2− 2m+1

−1 + 2m 2− 2m

)
.

1.2 Method 2

Let A be an n× n-matrix. Suppose it has n different eigenvalues. Then the algorithm goes as

following. Let’s write the approximation equation:

an−1t
n−1 + an−2t

n−2 + · · ·+ a1 = tm
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Let λ1, λ2, . . . , λn be different eigenvalues of A. Now let’s substitute λi’s into the approximation

equation instead of t. We will have n different equations with n variables. So, we can find

an−1, an−2, . . . , a0. Now, we will have that

Am = an−1A
n−1 + an−2A

n−2 + · · ·+ a1I.

Let’s note that this formula involves n− 1 different powers of a matrix.

Example 1.2. Let again A =

(
3 −2

1 0

)
. The approximation equation is

at + b = tm.

For A we already computed eigenvalues: λ1 = 1, λ2 = 2. Substituting them, we have:

{
a + b = 1

2a + b = 2m

Multiplying the first equation by 2 and subtracting from the second one, we get −b = 2m − 2,

so b = 2− 2m, and a = 1− b = 2m − 1. So,

Am = (2m − 1)

(
3 −2

1 0

)
+ (2− 2m)

(
1 0

0 1

)
=

(
2m+1 − 1 2− 2m+1

2m − 1 2− 2m

)

So, this method, of course, gave the same result as the first one.

2 Powers of nondiagonalizable matrices

We’ll consider 2× 2-matrices.

In the last chapter we considered a method of computing the power of the diagonalizable ma-

trix. Now we will generalize method 2 from the previous lecture to nondiagonalizable matrices.

We used an approximation equation,

at + b = tm

and substituted different eigenvalues to it to determine the coefficients. If we have just one

eigenvalue, we will take the derivative of the approximation equation:

a = mtm−1,

and substitute eigenvalue to it. We’ll demonstrate this approach in the following example.

Example 2.1. Let A =

(
2 −4

1 6

)
. Its eigenvalue is equal to 4. The approximation equation is

at + b = tm,
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and substituting t = 4, we get

4a + b = 4m.

Now, taking the derivative of this equation we have

a = mtm−1,

and substituting t = 4, we get

a = m4m−1.

So, a = m4m−1, and b = 4m −m4m. So, the formula for the m−-th power of A is

Am = (m4m−1)A + (4m −m4m)I

=

(
2m4m−1 + 4m −m4m −m4m

m4m−1 6m4m−1 + 4m −m4m

)

3 Square roots of diagonalizable matrices

In the previous chapters we saw how to compute m-th power of a diagonalizable matrix using

eigenvectors and eigenvalues. Now we will consider a problem of finding a square root of a

matrix. Suppose the matrix A is diagonalizable, i.e. it has n linearly independent eigenvectors

e1, e2, . . . , en with corresponding eigenvalues λ1, λ2, . . . , λn. Now if C is a matrix, where ei’s are

written as columns, and D is a diagonal matrix with λi’s over diagonal, then

A = CDC−1.

Let all λi’s be nonnegative numbers. Now let’s consider a matrix
√

D which has either positive

or negative square roots of λi’s on diagonal:

√
D =




±√λ1 0 . . . 0

0 ±√λ2 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . ±√λn




We can easily check that for such defined
√

D, we have (
√

D)2 = D. So we see that a square

root of a matrix A can be obtained from D and C by the following formula:

C
√

DC−1.

Let’s denote that there are more than one square root of a matrix — and all of them can be

obtained by choosing different signs before
√

λi’s in D−1.

Example 3.1. Let’s compute a square root of A =

(
7 2

3 6

)
. The characteristic polynomial is

pA(λ) = λ2− 13λ+36, so eigenvalues are λ1 = 4, λ2 = 9. Eigenvector, corresponding to λ1 = 4
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is determined from equation 3x1 + 2x2 = 0, so it can be (2,−3). Eigenvector, corresponding to

λ2 = 9 is determined from equation −2x1 + 2x2 = 0, so it can be (1, 1). So,

D =

(
4 0

0 9

)
, C =

(
2 1

−3 1

)
, C−1 =

1

5

(
1 −1

3 2

)
.

Now,
√

D =

(
±2 0

0 ±3

)
.

So, for positive signs in D we have:

√
A =

1

5

(
2 1

−3 1

)(
2 0

0 3

) (
1 −1

3 2

)

=
1

5

(
4 3

−6 3

)(
1 −1

3 2

)

=
1

5

(
13 2

3 12

)
.

In the same way we can get other square roots (changing signs in D).

If A has negative eigenvalues, then this algorithm is not applicable, but in this case there

are no square roots of A.
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